Cold Dark Matter Is it cold, dark, or matter?

Dr Julian Onions Nottingham University – FRAS O julianonions

NASA/ESA/MA

The Plan

Why do we believe it exists?

How can we find it?

What could it be

What is the universe made of?

WE HAVE BEEN HERE BEFORE THOUGH!

Neutrino déjà-vu?

Proposed – 1930 - Pauli

Detected - 1956

Н

I have done a terrible thing, I have postulated a particle that cannot be detected. -Wolfgang Pauli

H

 e^+

Higgs déjà-vu?

Proposed: 1964 Peter Higgs

 $(D,\phi)^*D^*\phi - U$

Dr p= Jrp-is

 $= \partial_{\mu} A_{\nu} -$

 $(\mathbf{F}, \mathbf{F}, \mathbf{F}) = \mathbf{V} \mathbf{V} \mathbf{V}$

Detected: 2012

Dark Matter...

Proposed: 1932ish

Still waiting...

Cosmology A-CDM

Current model of the universe

Lambda Cold Dark Matter

The life and death of cosmic voids

Authors: P. M. Sutter, Pascal Elahi, Bridget Falck, Julian Onions, Nico Hamaus, Alexander Knebe, Chaichalit Srisawat, Aurel Schneider

Abstract: We investigate the formation, growth, merger history, movement, and destruction of cosmic voids detected via the watershed transform code VIDE in a cosmological N-body dark matter ACDM simulation. By adapting a method used to construct halo merger trees, we are able to trace individual voids back to their initial appearance and record the merging and evolution of their progenitors at high redshift... \bigtriangledown More

Submitted 20 September, 2014; v1 submitted 28 March, 2014; originally announced March 2014.

Vacuum Energy

Quintessence

- A fifth force
 - Earth, Wind, Fire & Water
 - OR Strong, Weak, Electromagnetic, Gravity
 - OR normal matter, radiation (photons), cold dark matter, and neutrinos
- A scalar field theory?
- Chameleon field?
- Static or varying?

Cold - relatively slow moving

CDM

Dark – can't be seen At least not by light

CDM

Matter

CDM

as opposed to radiation

A brief history why we think it exists?

What's past is prologue

History

- Jan Oort 1932 looked at proper motion of stars in the galactic plane
 - Only 1/3 of the bright stars needed.
 - Missing mass assumed to be dim stars, dust and gas.

Keplerian Orbits

More recent

- Radio Astronomy allows mapping of gas
- Much further out for Andromeda

Big Bang Nucleosynthesis

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

Nature 2002

Formation of galaxies

Dark Energy Accelerated Expansion

Time for galaxies to form

Gravitational Lensing

Horseshoe ring / Abell 2218

Evidence from the CMB

So how to fix it?

- Either gravity doesn't work like we think it does
- Or, there is a whole lot of missing mass.
- Which might be explained by:
 - MACHOs.
 - Neutron stars
 - Black holes.
 - Extra gas.
 - Brown dwarfs

Microlensing

CDM

Missing Satellites

Durham University

What could it be?

Is this a dagger I see before me?

What could it be?

- Possibilities
 - WIMP
 - Neutralino
 - Sterile neutrino
 - Axion
 - Graviton
 - Dark sector (woooooo!)
 - MAQRO (Macroscopic quantum resonator) no really!
 - Q-ball, fuzzy-dark-matter, wimpzilla, ... they're just making stuff up now!

Supersymmetry and the Neutralino

 N^0

SUPERSYMMETRY

Standard particles

Axion/Axino

- Quantum Chromo Dynamics (QCD)
- Roberto Peccei and Helen Quinn (1977)
- A bit like a Higgs for quarks.

Sterile Neutrino

μ

O_S

υτ

De

Left handed Minute mass

Right handed Small mass

LKK

- Theory of extra dimensions from string theory
- Lightest Kaluza-Klein particle.
- KK photon
- KK neutrino

STRING THEORY SUMMARIZED:

I JUST HAD AN AWESOME IDEA. SUPPOSE ALL MATTER AND ENERGY IS MADE OF TINY, VIBRATING "STRINGS."

OKAY. WHAT WOULD THAT IMPLY? 1 DUNNO. xkcd.com

Others

- WIMPzilla
- Q-ball
- Scalar graviton
- Magic unicorn dust

Finding dark matter Make it, Shake it, Break it!

How do I detect thee? Let me count the ways...

Making it

Detecting it directly

Detection

WIMPs and Neutrons scatter from the Atomic Nucleus

> Photons and Electrons scatter from the Atomic Electrons

> > Image: Berkeley

ADMX – Univ of Washington

Detecting it indirectly

Alternatives

To be or not to be...

Milgrom and MOND

2

When
$$a >> a_0$$
 $F = ma$

When
$$a \ll a_0$$
 $F = \frac{ma}{a_0}$

- Makes galaxies behave perfectly
- But then it is designed to!
- Has some success.

MOND

• However

- Doesn't satisfy conservation laws such as momentum.
- Doesn't handle relativistic cases.
- Other issues

TeVeS and others

- Tensor-Vector-Scalar gravity (Berkenstein 2004)
- Relativistic generalisation of MOND
- Stars may be unstable under TeVeS
- Also
 - Scalar-Tensor-vector gravity (MOG)
 - Bi-scalar-tensor-vector gravity
 - f(R) theories modified Einstein equations

Conclusions

Cold Dark Matter

- Cold probably but could be warm
- Dark not really, more transparent
- Matter not really

Thank you for listening

